Use of XPS method in determination of chemical environment and oxidation state of sulfur and silver atoms in $Ag_6S_3O_4$ and $Ag_8S_4O_4$ compounds

E. TOMASZEWICZ*, M. KURZAWA

Department of Inorganic Chemistry, Technical University of Szczecin, Al.Piastów 42, Szczecin, Poland E-mail: tomela@ps.pl

Metal chalcogenide semiconductors such as sulfides (Ag₂S, CdS, ZnS), selenides (CuGaSe₂, CuInSe₂, ZnSe) and tellurides (Ag₂Te, CdTe, ZnTe) have been studied because of their optoelectronic applications [1, 2]. In particular, silver sulfide (α -Ag₂S, acanthite) is a *n*-type semiconductor [3, 4] which has been commonly used in photoconductors, photovoltaic and solar cells as well as in infra-red detectors.

Our studies on the reactivity, in air, in the solid state between Ag₂S and Ag₂SO₄ showed that both reagents were not mutually inert and reacted to give two phases: β -Ag₆S₃O₄ and β -Ag₈S₄O₄ [5–7]. We found that these phases showed polymorphism [8]. Low-temperature polymorphic forms of Ag₆S₃O₄ and Ag₈S₄O₄ compounds (α -phases) can be obtained, as precipitates, only in the reaction occurring between aqueous solutions of AgNO₃ and Na₂S₂O₃ [8, 9]. High-temperature polymorphic modification of Ag₆S₃O₄ is formed by heating Ag₂S/Ag₂SO₄ mixture according to the following reaction [5, 7]:

$$2Ag_2S_{(s)} + Ag_2SO_{4(s)} = \beta - Ag_6S_3O_{4(s)}$$
(1)

High-temperature polymorphic form of $Ag_8S_4O_4$, β - $Ag_8S_4O_4$, can be obtained by heating an initial mixture comprising 75.00 mol% of Ag_2S and 25.00 mol% of Ag_2SO_4 according to Equation 2 [6, 7]:

$$3Ag_2S_{(s)} + Ag_2SO_{4(s)} = \beta - Ag_8S_4O_{4(s)}$$
(2)

 α -Ag₆S₃O₄ undergoes irreversible, endothermic polymorphic transition to β -phase at 221 °C [9]. β -Ag₆S₃O₄ melts at 390 °C [10]. Low-temperature polymorphic form of Ag₈S₄O₄ undergoes irreversible, endothermic polymorphic transition to β -Ag₈S₄O₄ at 223 °C [9]. The latter phase melts at 400 °C [6]. α -, β -Ag₆S₃O₄ and β -Ag₈S₄O₄ crystallize in the monoclinic system while α -Ag₈S₄O₄ is tetragonal [5, 6, 8, 9]. Thermopower measurements at room temperature showed that α -modifications are *p*-type semiconductors while β -modifications are of *n*-type [11].

 α - and β -forms of Ag₆S₃O₄ and Ag₈S₄O₄ compounds were prepared as described previously [5, 6, 9]. X-ray photoelectron spectroscopy (XPS) measurements were performed using an ESCA 100 VSW (Manchester, UK) spectrometer with a Mg K_{α} X-ray

Figure 1 XPS spectrum of S2p for α -Ag₈S₄O₄.

Figure 2 XPS spectrum of S2p for β -Ag₈S₄O₄.

source ($h\nu = 1253.6 \text{ eV}$). The residual pressure inside the analysis chamber was in the 2×10^{-8} mbar range. X-ray photoelectron spectra were calibrated using the Ag3d_{5/2} signal from an Ag-foil (BE = 368.2 eV). The samples were sputtered with an Ar ion beam before the spectra were recorded (energy of Ar⁺ ions—2.5 keV, time of sputtering—10 min.).

Figs 1 and 2 show the spectra of $S2p_{3/2-1/2}$ for α and β -Ag₈S₄O₄, respectively. The BE values of S2p for Ag₂S, a mixture of Ag₂S/Ag₂SO₄, both polymorphic forms of Ag₆S₃O₄ and Ag₈S₄O₄ and for some reference sulfur compounds are listed in Table I. As summarized in the 4th column of Table I, the BE values of the S2p_{3/2} peaks, recorded for Ag₂S and Ag₂S/Ag₂SO₄ mixture (S(-II): 161.20 eV,161.50 eV and S(+VI): 168.30 eV),

^{*}Author to whom all correspondence should be addressed.

TABLE I Comparison of S2p BEs (eV) found in literature along with our values for Ag_2S , Ag_2S/Ag_2SO_4 mixture, and for both polymorphic forms of $Ag_6S_3O_4$ and $Ag_8S_4O_4$

Compound	Oxidation degree	S2p _{1/2} (eV)	S2p _{3/2} (eV)	Reference
1	2	3	4	5
α -Ag ₆ S ₃ O ₄	_	162.50	161.80	This study
		168.40	168.00	
β -Ag ₆ S ₃ O ₄	_	162.80	161.50	This study
		168.50	168.00	
α -Ag ₈ S ₄ O ₄	_	162.50	161.50	This study
		168.40	167.80	
β -Ag ₈ S ₄ O ₄	_	162.80	161.60	This study
		168.60	167.90	
Ag ₂ S and Ag ₂ SO ₄	-II	162.50	161.50	This study
mixed at the molar ratio 2:1	+VI	-	168.30	
Ag ₂ S	-II	162.90	161.20	This study
		_	160.70	12
FeS ₂	—I	_	162.30	13
			162.70	14
Na ₂ S ₂ O ₃	-II	_	161.80	13
Na ₂ S ₂ O ₃	+VI	_	162.00	14
			167.80	13
			168.10	14
Na ₂ SO ₃	+IV	_	166.50	13,14
FeSO ₄	+VI	-	168.80	15

TABLE II Comparison of Ag3d BEs (eV) found in literature along with our values for Ag_2S , Ag_2S/Ag_2SO_4 mixture, and for both polymorphic forms of $Ag_6S_3O_4$ and $Ag_8S_4O_4$

Compound	Oxidation degree	Ag3d _{3/2} (eV)	Ag3d _{5/2} (eV)	Reference
1	2	3	4	5
α -Ag ₆ S ₃ O ₄	_	373.80	367.90	This study
β -Ag ₆ S ₃ O ₄	_	373.90	367.90	This study
α -Ag ₈ S ₄ O ₄	_	374.00	368.00	This study
β -Ag ₈ S ₄ O ₄	_	373.90	367.90	This study
Ag ₂ S and Ag ₂ SO ₄ mixed at the molar ratio 2:1	+I	373.90	367.90	This study
Ag ₂ S	+I	373.70	367.70	This study
		_	367.80	12
Ag ₂ O	+I	373.70	367.70	16,17
		_	367.80	18
			367.90	19
AgO	+II	373.20	367.30	16,17
		_	367.60	19
Ag metallic	0	_	368.10	19

remain in good agreement with the literature values [12, 15]. Results of XPS studies, performed for lowand high-temperature polymorphic forms of $Ag_6S_3O_4$ and $Ag_8S_4O_4$, show a presence of only two different types of sulfur atoms. One of them ($S2p_{3/2}$ BE: $161.50 \div 161.80 \text{ eV}$) could be attributed to S(-II) sulfur. The other one ($S2p_{3/2}$ BE: $167.80 \div 168.00 \text{ eV}$) could be assigned to S(+VI) sulfur in SO_3S tetrahedron analogous to S(+VI) sulfur in $Na_2S_2O_3$ [13, 14]. From a comparison of the measured $S2p_{3/2}$ BE values for $Ag_6S_3O_4$ and $Ag_8S_4O_4$ compounds with the published values [12–15] it follows that neither S(+VI) in SO_4^{2-} nor S(+IV) in SO_3^{2-} as well as nor S(-I) in S_2^{2-} sulfur atoms can be seen in the analyzed phases.

The Ag3d_{5/2-3/2} spectra for α - and β -Ag₆S₃O₄ are showed in Figs 3 and 4,respectively. In Table II, the BE values of Ag3d electron doublet, measured for Ag₂S,

Ag₂S/Ag₂SO₄ mixture, α - and β -forms of Ag₆S₃O₄ and Ag₈S₄O₄, are given together with analogous, published values for some silver(I) compounds [16–19]. The BE values of Ag3d_{5/2-3/2} for AgO (Ag^IAg^{III}O₂ two kinds of silver atoms [20]) are given in Table II, too. In this work, the BEs of the $Ag3d_{5/2}$ peak were recorded at 367.70 eV and at 367.90 eV for Ag₂S and Ag₂S/Ag₂SO₄ mixture, respectively. These values are very similar to those reported by other authors (Table II) [12, 16–19] and they are assigned to Ag(+I) silver atoms. XPS investigations show that the BE values of $Ag3d_{5/2}$ for both forms of $Ag_6S_3O_4$ and Ag₈S₄O₄ were shifted, in comparison to analogous BE value for AgO, to higher BE values. Likewise, the BEs of Ag3d_{5/2} measured for analyzed phases are in very good agreement with those observed in Ag₂S, Ag₂S/Ag₂SO₄ mixture and Ag₂O [16–19]. These facts

Figure 3 XPS spectrum of Ag3d for α -Ag₆S₃O₄.

Figure 4 XPS spectrum of Ag3d for β -Ag₆S₃O₄.

point to the presence of Ag(+I) silver in analyzed compounds.

Acknowledgment

The authors thank Ms. Z. Piwowarska (Jagiellonian University, Faculty of Chemistry, Kraków, Poland) for carrying out the XPS measurements.

References

- 1. H. MEHERZI-MAGHRAOUI, M. DACHRAOUI, S. BELGACEM, K. D. BUHRE, R. KUNST, P. COWACHE and D. LINCOT, *Thin Solid Films* **288** (1996) 217.
- 2. A. B. KULKARNI, M. D. UPLANE and C. D. LOKHANDE, *Mater. Chem. Phys.* **41** (1995) 75.
- 3. G. BONNECAZE, A. LICHANOT and S. GROMB, *J. Phys. Chem. Solids* **39** (1978) 299.
- S. R. BARMAN, N. SHANTHI, A. K. SHUKLA and D. D. SARMA, *Phys. Rev. B* 53 (1996) 3746.
- J. WALCZAK, F. BOCCUZZI and E. ŁUKASZCZYK-TOMASZEWICZ, J. Alloy Comp. 224 (1995) 203.
- 6. M. KURZAWA and E. TOMASZEWICZ, *Mater. Res. Bull.* 35 (2000) 637.
- 7. E. TOMASZEWICZ, M. KURZAWA and L. WACHOWSKI, J. Mater. Sci. Lett. 21 (2002) 547.
- 8. M. KURZAWA and E. TOMASZEWICZ, J. Mater. Sci. 35 (2000) 795.
- 9. H. HIRSCH, J. Appl. Cryst. 12 (1979) 203.
- 10. M. KURZAWA and E. TOMASZEWICZ, *Thermochim. Acta* 346 (2000) 161.
- 11. T. GROŃ, E. TOMASZEWICZ and M. KURZAWA, J. Mater. Sci. Lett. 19 (2000) 541.
- 12. W. ZHANG, L. ZHANG, Z. HUI, X. ZHANG and Y. QIAN, *Solid State Ion.* **130** (2000) 111.
- M. DESCOSTES, F. MERCIER, N. THROMAT, C. BEACAIRE and M. GAUTIER-SOYER, *Appl. Surf. Sci.* 165 (2000) 288.
- 14. D. BRION, *ibid.* 5 (1980) 133.
- 15. R. V. SIRIWARDANE and J. M. COOK, *J. Coll. Interf. Sci.* 104 (1985) 350.
- 16. G. B. HOFLUND, J. F. WEAVER and W. S. EPLING, Surf. Sci. Spectra 3 (1995) 157.
- 17. G. SCHÖN, Acta Chem. Scand. 27 (1973) 2623.
- 18. S. W. GAARENSTROOM and N. WINOGRAD, J. Chem. Phys. 67 (1977) 15.
- D. BRIGGS and M. P. SEAH, "Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy" (John Wiley & Sons, New York, 1983).
- 20. J. A. MCMILLAN, Chem. Rev. 62 (1962) 65.

Received 21 July and accepted 15 October 2003